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Abstract. The engineering research and design requirements of today pose great challenges in computer simu-
lation to engineers and scientists who are called on to analyze phenomena in continuum mechanics. The study
of hydrodynamic instability is a subject well researched, and comes in numerous practical situations such as aero-
dynamics, combustions and environmental engineering. In the current work, the instability of a compressible free
shear layer at relatively low Reynolds numbers was investigated. In the aerospace context, important applications
involve compressible flows at relatively low Reynolds numbers. Among them, the flow on gas turbine blades and the
flow on high lift devices such as slats and flaps at high angle of attack are particularly important. In aerodynamic
applications at low Reynolds numbers, often a substantial portion of the flow is in the transition regime, or in
the initial turbulent stages. Despite the extensive research carried out in the field, there are various aspects of the
transition process that require further studies. The transition in compressible flows is an erxample. Here, simu-
lations of compressible Navier-Stokes equations have been performed. Spatial derivatives in these equations were
discretized using of a sizth-order finite-difference method. In order to solve the time derivatives a fourth-order
Runge-Kutta method was adopted. As the last step of the integration scheme, a compact filter was applied to
remove short length scales in the streamwise and normal directions. Moreover, the compact schemes were modified
to work with non-uniform grids. In this case, a stretching in y-direction was implemented with the objective to
reduce the sound waves generated by shear region and to tmprove the resolution in the interior of the domain.
The numerical investigation starts with an analysis of the amplification rate in linear regime. Tests were also
performed in the non-linear regime and it was possible to reproduce the vortex roll-up and pairing. Through these
results, the effect of the Mach number on the evolution of shear instabilities was analyzed.
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1. Introduction

The study of transition in mixing layers has constituted one of the main research themes in turbulence over
the last thirty years. This flow types is found in many situations in nature like in atmospheric flows, volcanic
eruptions, stellar jets and in industrial applications such as gas turbine combustors, airfoil wakes and rocket



exhausts. A detailed understanding of the physics of free shear layers is essential for the development of new
turbulence and mixing models. Improved models of mixing in free shear layers will lead to a better capability
of predicting chemical reactions and controlling pollutant emissions, for example from oil and gas burners in
power generation plants. Also progress in space research is dependent on developing more efficient propulsion
systems, and vehicles capable of carrying a higher payload into orbit.

A mixing layer develops at the interface of two-stream of different speeds. The velocity profile formed
possesses an inflection point that is unstable to infinitesimal disturbances. This phenomenon called Kelvin-
Helmholtz instability is inviscid and is responsible for the formation of vorticity structures aligned in the lateral
direction. This behavior was observed laboratory experiments carried out by Birch and Eggers, 1973 and Brown
and Roshko, 1974. According to Lesieur, 1997 due to the vorticity concentration, the recognizable form, and
the unpredictability in relation to the location in the time and space, these vortical structures exhibit all the
characteristics of coherent structures.

In addition to Kelvin-Helmholtz instability vortex, experimental works presented by Bernal and Roshko, 1986
and numerical works published by Metcalfe et al., 1987 put in evidence the existence of one secondary instability
that causes, in the stagnation area between the Kelvin-Helmholtz vortices, intense longitudinal counter-rotative
vortices. These longitudinal vortices, denominated hairpins are easily identifiable in a transverse cut in the
form of a mushroom and responsible for the largest portion of the transfer of mass, momentum and energy
conservation in transitional and turbulent flows.

Studies of the linear stability of compressible mixing layers presented by Lessen et al., 1966, Blumen et al.,
1975 show a strong reduction in the amplification rate of two-dimensional disturbances in the flow as Mach
number is increased. In compressible mixing layers there are two flows with different speeds, and consequently,
with different characteristic Mach numbers. Therefore the representative parameter is the convective Mach
number (Papamoschou and Roshko, 1988). Experiments show that this parameter characterizes the flow cor-
rectly for Mach number below 0.6. Simulations carried out by Sandham and Reynolds, 1989 show that for
convective Mach number lower than 0.6 the two-dimensional disturbances is the most strongly amplified whilst
for convective Mach number above to 0.6, the oblique waves are dominant in the flow and the mixing layer will
have a highly three-dimensional structure.

These kinds of flows possess wide range of space and time scales and therefore require high accuracy in the
numerical solution. This accuracy requirement can be achieve by the use of spectral methods (Canuto et al.,
1987). These methods can be used to assure that all relevant scales are captured, but high-order finite-difference
are also able to represent short length scales with good accuracy. Lele, 1992, emphasizes the importance of
using high-order schemes for first and second derivatives. Mahesh, 1998, presents high-order finite-difference
schemes, introducing a method that, using the same stencil is more accurate than the standard Padé schemes.
A disadvantage of his method is that it requires the solution of first and second derivatives simultaneously.
Souza et al., 2002a; Souza et al., 2002b, used high-order compact methods for transition phenomenon problems.
In these studies it was investigated the propagation of the Tollmien-Schlichting waves in incompressible flows.

In the present work, a high-order compact scheme was adopted to solve the spatial derivatives (Lele, 1992).
The computational domain is periodic in x-direction. In the y-direction, the free-slip condition was adopted
according to Medeiros et al., 2000 and Souza, 2003. Emphasizing that this boundary condition produces
accurate results for a sufficiently large distance from the mixing layer. Another possibility would be to use an
exponential decay condition, except that this method is only rigorously correct in the linear regime. Thompson,
1987 presents non-reflecting boundary conditions whereas the idea of these boundary conditions is to consider
the characteristic form of the Euler equation at the boundary. Finally, to solve the temporal derivatives, the
time-advancement is obtained by using a high-order Runge-Kutta scheme in agreement with Williamson, 1980.
This scheme is conditionally stable and therefore small time increments are required to assure that the stability
criterion is satisfied. A similar scheme was used by Kloker et al., 1993.

The linear and non-linear temporal evolution of two-dimensional instability waves in the unconfined mixing
layer was simulated. Tests based on the linear stability theory were used to validate the code. In these
tests, the growth rates obtained in the present simulations was compared with results from other numerical
works. Simulations in the non-linear regime were also performed. The long term objective of this work is the
simulation of compressible boundary layer phenomena, such as the present studied, the authors of this work
consider essential to verify the code first with as the case of mixing layer and acoustic wave problems. Previous
works present other verification tests with the simulation of the linear acoustic wave problem (Germanos et al.,
2004).

The organization of the paper is as follows. Section 2 presents the formulation of the governing equations
adopted in the current work. Details of the numerical method are described in the section 3. Section 4 shows
a numerical simulation of the mixing layer instability. The last section presents the conclusion of this work.



2. Formulation

In this study, the governing equations are the compressible, Navier-Stokes equations according to Sandham
and Reynolds, 1991 and Eibler and Bestek, 1996. They consist of the momentum equations for the velocity
components (u,v) in the streamwise direction (x) and normal direction (y)
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Op | Opu;

o oz, )
5_E 5UJ(E +p) . _% anTij

ot Vo, " "oz, T o ®)

where x; are the Cartesian coordinates (x,y), t is the time, u,; are the velocity components (u,v), p is the
density and p is the pressure. The non-dimensional constitutive relations for a Newtonian fluid with Fourier
heat conduction are
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The total energy F; is given by E; = p (e + #), where e is the internal energy. The Reynolds number of
the flow is defined as

_p1U15

Re wo 6
. (6)

where U is the velocity, p is the density and y is the dynamic viscosity of the flow. The variable ¢, is the
vorticity thickness of the initial velocity given by
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where the subscript 1 and 2 refers to the upper (y > 0) and lower (y < 0) free stream, respectively. The
perfect-gas law for pressure and temperature in this non-dimensional scheme is

p=(y—1)pe, (8)
M2
=122 (9)
p
where ~ is the relation of the specific heat. The Prandtl number Pr = %t was assumed constant Pr = 1,

where k is the thermal conductivity.

These equations were defined with the following non-dimensionalization scheme
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where a* is the dimensional wavenumber of the disturbed flow, w* is the dimensional frequency of the flow.



3. Methodology
3.1. Initial Condition

The first step for simulating instabilities in a shear layer is to implement a initial velocity profile. In the
velocity profile adopted in this work, the upper part of the stream travels faster than the lower part. The choice
of transition between these two different speeds is crucial in order not to generate waves in the first time steps,
which could then be reflected on edges. In this work, the two-dimensional problem was considered because it has
been shown that for low Mach numbers (typically under 0.4), the dominant instability mode for the shear layer
is two-dimensional and that three-dimensional instabilities only become important for high Mach numbers.

Many different velocity profiles have been proposed in the literature for modelizing a shear layer. Rayleigh,
1880 has demonstrated that the profile has to have an inflexion point to be unstable. This means that dis-
turbances will be amplified and lead to the formation of vortice structures, which will also be in an unstable
equilibrium and therefore will create some pairing until the energy has dispersed through viscous dissipation.
The profile used in this numerical work corresponds in an hyperbolic tangent function that uses a velocity means
at upper and lower of the free stream flow to calculate the velocity in coordinate .

Along with the velocity profile the disturbance flow has to be defined. Numerical errors engender pertur-
bations, which are sufficient to suscitate such instabilities in the shear layer flow but only after a very long
time. The formation of vortice structures can be largely accelerated by using some disturbance functions, which
correspond to the eigenfunctions of stream. This idea of exciting a stream adding to the mean flow a little dis-
turbance to accelerated the process is widely spread in the scientific community. This technique was often used
by Colonius et al., 1997 for spatial development, Michalke, 1964 for temporal development in incompressible
flows and Sandham and Reynolds, 1991 for compressible case.

Thus the variables were decomposed into two parts: the temporary mean and a small disturbance. This
way the primitive variables can be rewritten in the following way
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where the subscript () refers to a temporary mean flow and () refers to a small disturbance. The mean flow
is invariant in the streamwise direction and the component (v) of the mean velocity is null. In other words, the
mean flow is locally parallel.

In this work the velocity profile is defined as
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The vorticity thickness is given by equation 7. This profile has often been used because it has the great
advantages of being analytical. Consequently, speed can be calculated exactly for each value of . The derivatives
of this function are known as well. The tangent profile was used by Michalke, 1964 and by Fortuné, 2000 in
their papers about shear layer developing in time and by Colonius et al., 1997 for shear layers developing in
space. A disadvantage of using the tangent profile is that it neither satisfies the momentum equation nor the
energy equation and, therefore, it can cause an impact in first time steps in the numerical integration of the
temporal primitives variables of Navier-Stokes equation.

The initial mean temperature profile can be specified as a solution to the compressible boundary layer
energy equation (White, 1974), assuming unity Prandtl number. For the antisymmetric mean velocity profile
considered here, and with equal free stream temperatures the general relation of Crocco-Busemann is given by

— v—1 _
Toy) = 1+ MZ——(1 - a5(y)), (13)
This relation assumes parallel flow. It is noted that for all simulations here the convective Mach number M,
is equal to the free stream Mach number M. Uniform pressure is assumed for the initial mean flow (py = »y—z\l/ﬂ)’
so the mean density profile is calculated with equation 8.
The disturbances can be generalized by
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where « refers to the spatial wavenumber and w to the frequency of the disturbance flow. The variable ¢,
correspond to an eigenfunction of the stream and ¢- refers to the first subharmonic mode. The eigenfunction u’
is a function of the y-coordinate only. For the time-developing shear layer problem, disturbances grow in time.
Thus, the wavenumber « is real. The streamwise wavelength of a disturbance is given by L, = 27 /«, the phase
speed by ¢, = w,/a and the amplification rate by w;.

In this work the eigenfunctions were approximated by exponential functions (Michalke, 1964). Exponential
functions are convenient because they decrease really quick and respect the boundary conditions u'(} 00) = 0.
Furthermore, those functions can easily be analytically differentiated. For find the disturbance flow some
assumptions were made. First the flow is considered inviscid because mechanism of instability is inviscid and
the only effect of viscosity is to damp the growing disturbances. Second the flow is considered incompressible,
which is only true for very small Mach numbers. Based on these hypotheses the disturbance flow can be defined
as

o= 20y [A; sin(aqz)ag + A sin(asz)on ] exp(—oy?), (15)
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where A is the amplitude, « is the wavenumber and o is the spread of the disturbance in the y-direction. The
subscript 1 refers to the dominant mode fundamental and subscript 2 refers to the subharmonic mode.

3.2. Boundary Conditions

In these simulations we are considering the problem of an unbounded compressible mixing layer. The infinite
extent could be obtained by using a mapping function, but this would lead to poor resolution of the flow far
away from the mixing layer. In particular, sound waves would propagate into regions of the computational
domain where these waves would be poorly resolved, and might be reflected back and contaminate the main
flow. Thus, we require boundary conditions which simulate an infinite domain, even though the computational
domain is finite. In order to reproduce this mechanism, the appropriate specification of boundary conditions
represents an important task for the development of computational simulations. At the free stream boundary
the flow was assumed to be irrotational. This assumption is usually satisfied to machine precision in numerical
calculations. Thus, the normal component of velocity in the free stream is set to zero. This condition satisfies
the impermeability conditions. For other primitive variables the first derivatives are set to zero to satisfies the
condition of free-slip. These schemes can be seen below

v = 0,
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Ideally, one would like enforcing a vanishing perturbation velocity at a very large distance from the shear
layer, but these requires a very large computational domain. For a sufficient large distance form shear layer,
this boundary condition should produce accurate results.

Another assumption used in this work is to considered a boundary condition of Roubin that specified the
disturbance velocity for normal component as

v
— =—av 18
5 (18)
This condition imposes exponential decay of disturbances at the free-stream. In the case of shear layer, this
exponential decay follows from linear stability theory. For sufficiently large distance from the shear zone the
solution is quite insensitive to the value of «.
Finally, in x-direction a periodic boundary conditions was used as proceed below.
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This method was verified through linear acoustic waves problems. Details about these tests can be found in
the technical report by Germanos and Medeiros, 2004.

3.3. Numerical Methods

This section presents the numerical method adopted for a time-developing free shear layer problem. These
types of flows possess wide range of space and time scales and therefore require high accuracy at the numerical



solution. This requirement of accuracy can be achieve by the use of spectral methods (Canuto et al., 1987).
The use of this scheme is restricted to flows in simple domains and with simple boundary conditions. In
order to overcome these difficulties an alternative numerical representations can be used as the finite-differences
schemes and the finite volume schemes. The advantage of finite volume schemes has advantages in working
with complex domains and also with complex boundary conditions. On the other hand the finite-differences
schemes is justified by the possibility of the use of more general boundary conditions, although the schemes with
high-order of accuracy is also restricted to the problem with simple domains. The advantage of these schemes
in relation to finite volume schemes is that high-order approximations can be obtained. These schemes can be
classified as explicit or implicit. Although the cost of inverting a banded matrix to obtain the nodal derivatives,
the implicit schemes are significantly more accurate for the small scales than explicit schemes with the same
stencil width (Collatz, 1966 and Kopal, 1961). Since tridiagonal matrices can be inverted quite efficiently
(Strang, 1988), the implicit schemes are extremely attractive when explicit time advancement schemes are used.
The most popular of the implicit schemes also called compact schemes is the symmetric sixth order version.
These schemes is non-dissipative due to the symmetry.

Here the finite-difference approximation to the derivative of the function is expressed as a linear combination
of the given function values on a set of nodes. First a uniformly spaced mesh was considered where the nodes
are indexed by i. The independent variable at the nodes is x; = ¢h for 0 < i < N. In these schemes the value
of f! possess a dependence with all the nodal values. In general implicit or compact schemes are significantly
more accurate for short length scales than explicit schemes (Collatz, 1966 and Kopal, 1961). This increase of
accuracy can be reached with the inversion of a tridiagonal matrix to obtain the derivative values. Strang, 1988
presents quite efficient methods to solve linear system like this. Lele, 1992 emphasizes the importance of using
methods of high-order and proposes schemes with 6 order approximation in the interior of the mesh whereas
at the boundaries and near the boundaries the 3"¢ and 4*" order approximation was used, respectively.

Below, the discretization used in the streamwise and the normal direction are present. The letters i,
represent the grid position in the x and y directions, which varies from 0 to M, N respectively. In the x-
direction, the 6t" order implicit (compact) derivatives for 0 < i < M as follows

The viscous terms in the governing equations require evaluation of successive derivatives, for instance Y
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When a spectral method is used there is no loss of accuracy if these derivatives are computed by two applications
of a first derivatives. However, with finite-difference methods we find that two applications of a first derivative
gives a significantly worse representation of the high wavenumbers than a single second derivative computation.
This is because the modified wavenumber (Lele, 1992) goes to zero for the first derivative at high wavenumbers.
The solution for this problem is to expand all terms in the y direction and calculate the primitives variables in
the non-conservative formulation. Therefore the schemes of second derivatives adopted in this work are
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In the normal direction, a non-periodic scheme was studied. This scheme was used by Souza et al., 2002c. At
the boundaries a 5" order asymmetric approximation was proposed, whilst for points near the boundaries the
6!" order asymmetric approximation was used. For the interior points, the 6" order symmetric approximation
was adopted whereas this scheme satisfies free-slip conditions. In this work an alternative scheme was used.
This alternative scheme consist in using a 2" order approximation at the boundaries and for the points near the
boundaries. Tests were performed with both schemes and the results confirm that the numerical scheme is more



stable over time. Details about these tests can be found in the technical report by Germanos and Medeiros,
2006. Emphasizes that these schemes will be used only at the free-stream for a sufficiently distance from the
shear zone. This compact scheme for first and second derivatives can be seen below

The schemes above were modified to work with free-slip condition as proceeds below
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Table 1 shows the round-off error for the first derivatives schemes and the stencil size of 2" order explicit
and 6" order compact methods:

Schemes Max L.H.S. | Max R.H.S. | Truncation Error
Stencil Size | Stencil Size
274 order - 1st derivatives 1 3 —=h?f?
274 order - 2nd derivatives 1 3 —5h?f?
" order compact - 1st derivatives 3 5 = h6 fr
6™ order compact - 2nd derivatives 3 5 —27h°

Table 1: Stencil size and round-off error.

The non-linear terms in Navier-Stokes equation can produce an numerical instability adding disturbances
non physical of high frequency in the variables during the simulation. In order to remove a short length scales



a high-order compact filter was implemented in agreement with Lele, 1992. The numerical filter was applied in
the last step of Runge-Kutta scheme. This filter consist in to recalculate the distribution of primitive variables
through one 4" compact scheme. These schemes can be solved through one pentadiagonal system as follow

below
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a = 0.6522474, 8 =0.1702929, a = 0.9891856, b = 1.3211800, ¢ = 0.3333548, d = 0.001359850.

Implementation of the filtering schemes on domains with non-periodic boundaries requires the near boundary
nodes to be treated separately. Therefore explicit near boundary formulas are

The truncation error for these methods is shown in table below

_%f1+1_16(4f2—6f3+4f4—f5)
3.1 .
_Zf2+1_6(f1+6f3_ fa+ f5)

— gf3+1—16(—f1+4f2+4f4—f5)

Schemes | Max L.H.S. | Max R.H.S. | Truncation Error
Stencil Size | Stencil Size
27 5 7 —zh* !
28 1 5 4—58h4 f*
o e 114
48

Table 2: Stencil size and round-off error for numerical filter.

Time-advance of the computational variables (p,pu;,E;) is obtained by the 4" order Runge-Kutta method.
The discretized transport equations are used to determine the values of the variables at each point of the
computational domain at time ¢,1 = t,, +dt. The schemes here described works in 4 steps (Ferziger and Peric,
1997). The first two steps use a formulation of Euler "predictor" explicit and a formulation of Euler "corrector"
implicit for the same time ¢ + dt/2. The following step is a "predictor" based on the rule of the medium point
for the whole step (¢ + dt) and the last, "corrector" is based on Simpson’s rule. The combination of these steps
results in a 4" order accuracy algorithm.



3.4. Grid Stretching

The classical governing equations of fluid dynamics have been presented in section 3. These equations have
been written in either vector or tensor form. These equations can be expressed in terms of any generalized
orthogonal coordinate system. For many applications, a orthogonal coordinate system is desirable such as a
shear layer problem. In this section, we will show how the governing equations can be transformed from a
Cartesian coordinate system to any general orthogonal coordinate system. In this process, we will demonstrate
how simple transformations can be used to cluster grid points in regions of large gradients and how to transform
a non-rectangular computational region in the physical plane into a rectangular uniformly-spaced grid in the
computational plane.

Flow-field has to precisely gridded because important variations of velocity and temperature are observed
in this field. Therefore we would like to simulate some fields with axes y between —Ly/2.0 and Ly/2.0. In the
points near free stream the field requires a resolution with less accuracy, while in the interior of the domain we
need greater resolution. It is possible to realize a stretching of the grid to decrease number of points required.

In this work we use a formula coming from Anderson et al., 1984 giving a constant stretching, with 3, which
is a stretching parameter and y., the locations, where this stretching is centered.

sinh[f(n — A)]
A .
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In order to apply this transformation to the governing equations, the following partial derivatives are formed.
For the first derivatives we have the following simple relation
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This relation should be used with high-order compact schemes. Applying the relation 33 for derivatives
approximations, we are obtained the following tridiagonal compact schemes for first derivatives
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The same procedure can be applied for the second derivatives
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Therefore, applying the relation 39 to the second derivative approximation we have the tridiagonal system as
follow below

1 0%f 1 0%f 1 0%f fivi—=fier  five — fima | " Of
2 0y? i P2 Oy ; 1 Oy? i on on V'3 Oy (40)

Bogey et al., 2000 recommend that the grid stretching should not exceed 1.8% in order to avoid problems
with space derivatives. Another assumption of these methods is that the mesh must be sufficiently smooth so
that dy/0n and 0%y/dn? can be defined, and, in practice, calculated without appreciable loss in the overall
accuracy. For this simulation § = 12 was assumed. Other tests was performed with this parameter and this
value showed the best results. With § = 15 the code presents a numerical instabilities in the time integration.
These results will be discussed in the next sections.

4. Numerical Results

In this section, results from direct numerical simulations of the compressible Navier-Stokes equations are
used to show the physics of the vorticity transport phenomenon in the linear and non-linear regime of the
time-developing mixing layer problem. Firstly, an analysis of the amplification rate in the linear regime was
performed to compared the growth rate obtained numerically with other theoretical results. These validation
tests were extended to a regime governed by non-linear. First, it was simulated a flow using a small disturbance
of a stipulated mode. In this case, it was possible to reproduce the vorticity phenomenon in streamwise direction.
After, a subharmonic mode was introduced in the disturbance flow to develop the pairing that corresponding to
the secondary instability. According to these studies was possible to confirm the strong reduction in shear layer
growth rate as Mach number is increased. In all simulations here a non-uniform grid was used to reproduce the
phenomenon, and consequently, an analysis of the efficacy of grid stretching was performed in these studies.

In these numerical investigations a relatively high Reynolds number was chosen to ensure that the viscous
effects were small. The high Mach number was select to analyze the effects of compressibility in the evolution
of two-dimensional disturbances. Moreover, a high-order compact finite-difference scheme was used to solve
spatial derivatives. Time-advance of the computational primitives variables were obtained by a 4'" order
explicit Runge-Kutta scheme. In x-direction, periodic boundary conditions were utilized, while in y-direction a
free-slip condition was used. In order to remove short length scales, a 4" order compact numerical filter was
applied in x- and y-directions. The analysis of the filter implementation is show in the technical report given
by Germanos and Medeiros, 2005.

4.1. Linear Stability

This section presents the evolution of two-dimensional sinusoidal disturbances in a free shear layer problem
for the tangent hyperbolic profile in the regime governed by linear theory. The objective of this simulation was
to compare the growth rate of the two-dimensional disturbances with other works. Theoretical results used in
this paper were obtained through the temporal linear stability analysis carried out by Sandham and Reynolds,
1991. Here, simulations were performed to verify the effect of Mach number in the evolution of instabilities.
These results confirm the prediction of linear stability theory that at low Mach numbers the two-dimensional
instability waves are the most unstable.

An important aspect to be considered in these simulations is the treatment of the vertical diffusion. This
diffusion increases the width of the free shear layer during the simulation, which implies a variation of the mean
flow over time. Thus, there should be a variation of the amplification rate, even in the linear regime. The
strategy adopted here to avoid this diffusion was to cancel the vertical diffusions terms for the base flow.

First the problem was simulated with Euler equations. In this case, the convective Mach number selected
were 0.4 and 0.8. The mesh for these problems has a dimension of 40 x 80, that corresponds to the number of
points in x— and y— directions. The grid spacing used in the simulation with a uniform mesh was dx = 0.41
and dy = 0.30, respectively, grid spacing in longitudinal and normal direction. In the non-uniform mesh in y-
direction the minimum and maximum mesh spacing was dy,,;, = 0.0089 and dy,,4, = 1.67. The mesh spacing
is constant in x-direction. Moreover, the initial amplitude of the disturbance was approximately 10~6. This
amplitude ensure that the phenomenon will start in regime governed by linear theory. The time step dt of this
simulation was 1073. These tests were performed using a disturbance with only one mode. The wavenumber o
of this disturbance was a; = 0.75. This is close to the wavenumber of maximum amplification.

Figure 1 shows the growth rate of unstable waves at convective Mach number equals to 0.4 as a function of
non-dimensional time. In this figure the vertical coordinate is in logarithm scale. The dashed-dotted line is the
numerical result for a uniform grid. The amplification rate obtained from this line is about 0.27. The disagree-
ment could be attributed to the numerical order generate by constant spacing grid used in these simulations.
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The solid line shows the result for a non-uniform grid with a stretching parameter of § = 12. The growth rate
in this line corresponds to an amplification rate of 0.30 which is in agreement with theoretical results.

Figure 2 presents the amplification rate at convective Mach number M, = 0.8. Similar to the previous
results, the dashed-dotted line gives an amplification rate of about 0.17 for uniform grid. The theoretical results
for this convective Mach number shows a amplification rate about of 0.14. The solid line represents the same
results with the use of a grid stretching. The growth rate obtained in this simulation was 0.15. This result
is very close to the prediction. Based on these results we can observe that the amplification rate obtained in
these simulations was significantly reduced with increasing of convective Mach number. These results confirm
the reduction in the amplification rate for high Mach numbers. Therefore the agreement of these results is
remarkable.
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Figure 1: Amplitude evolution from inviscid flow at
Mach number equals to 0.4 and wavenumber approx-
imately to 0.75.
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Figure 2: Amplitude evolution from inviscid flow at
convective Mach number equals to 0.8 and wavenum-
ber approximately to 0.75.

In the following, simulations for the compressible Navier-Stokes equations were performed. The initial
amplitude of the disturbance of the dominant mode was the same as in previous simulations. The wavenumber
of the disturbance selected for the simulations was o = 0.82. This growth rate was chosen to compare the
results with theoretical results. In figure 3 the dashed-dotted line show the time evolution of two-dimensional
disturbance at convective Mach number equals 0.4 for a grid with constant spacing. The amplification rate
obtained in these results is about 0.26. This is a underestimate rate compared to theoretical results that gives
a amplification rate about 0.28. The solid line show a growth rate approximately of 0.29 with the use of grid
stretching. Although these results be overestimate in relation to the theory, it is closed to the linear analysis.
These results confirm that the simulations with grid stretching lead to improved amplification rate obtained
numerically.

Figure 4 shows the time evolution for convective Mach number equals to 0.8 and Reynolds number equals
to 500. The same analysis was made. The amplification rate generate for a uniform mesh was 0.14, while for
a mesh with stretching the rate was approximately 0.13. Both results are close to the analytical results where
gives a grow rate about 0.11. Furthermore, we can realize that using of grid stretching improved the agreement
in the analysis of amplification rate. Emphasizes that the same number of points in y-direction was used to
simulate the phenomenon with an uniform and non-uniform mesh. Therefore, the grid stretching significantly
improves the accuracy for a number of grid points. Alternatively, the same numerical accuracy can be achieved
with fewer grid points by clustering the points in the region of interest thus reducing computational cost.

4.2. Non-linear Stability

For the a numerical investigations discussed here, the full compressible Navier-Stokes equations were con-
sidered to analyze the problem in the non-linear regime. The evolution of a small two-dimensional disturbance
in shear layer was performed in a non-uniform grid. This grid allows fro greater resolution in the interior of
the computational domain where the instability phenomenon occurs. Consequently, the numerical error in this
zone is reduced due to the refinement of the grid. Another aspect considered here is that the grid is stretched
in zones close to the boundaries where the instabilities waves have decayed. In order to verify the code, simu-
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Figure 3: Amplitude evolution from inviscid flow at Figure 4: Amplitude evolution from inviscid flow at
convective Mach number equals to 0.4 and wavenum- convective Mach number equals to 0.8 and wavenum-
ber approximately to 0.75. ber approximately to 0.75.

lations were carried out to reproduce the secondary instability mechanism. According to the theory a pairing
phenomenon produces waves that propagate towards the boundaries. These waves can be reflected from the
boundaries resulting in a non-physical distortion of the numerical results. The grid stretching can prevent that
these waves reaches the boundaries, rendering the code more stable in time-advancement.

As a first step, the simulation of the compressible Euler equations for a two-dimensional flow was performed.
The objective here is to determine the maximum allowable grid stretching for which the computational remains
stable. For this problem a mesh with a dimension of 40 x 80, number of points in x- and y-direction was chosen.
The grid spacing used in this simulation for a uniform mesh was dxr = 0.50 and dy = 0.30, respectively, grid
spacing in longitudinal and normal direction. For non-uniform grid the minimum and maximum spacing in
y-direction was dy,in = 0.0089 and dy.,e. = 1.67. Mesh spacing is constant in the x-direction. The initial
amplitude of the disturbance was approximately 1076, This value satisfies the CFL condition. The wavenum-
ber of the disturbance selected for the simulation was a3 = 0.75 for dominant mode and as = «1/2 for the
subharmonic mode. This is close to the wavenumber of maximum amplification. Figure 5 show the non-linear
evolution of the disturbances in time for a uniform mesh. In this figure, the coordinate z presents the vorticity
component in the x-direction. It can be observed that the shear region produces waves that propagate towards
the free stream boundaries. This production of sound waves is undesirable and has to be minimized.

Figure 5: Amplitude evolution from inviscid flow at convective Mach number equals to 0.4 and wavenumber
approximately to 0.89. The subharmonic mode was introduced here to reproduce the secondary instability.
A uniform grid in the y-direction was used in these simulations. The frames presented correspond to the
non-dimensional times 60, 68 and 78.
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Figure 6 shows the evolution of the same problem on a non-uniform grid. Different from the stretching
parameter used for the linear regime, the stretching parameter chosen for the non-linear regime was 3 = 10.
Many values for this parameter have been tested and this value presents the best results in relation computational
efficiency, without causing numerical problems with the spatial derivatives. It can be seen in this figure that the
formation of sound waves in the shear zone was strongly reduced with the application of stretching. In figure 7
we can seen a simulation with the application of § = 15. In this case, the numerical scheme becomes unstable
in time. These results confirm that the grid stretching cannot exceed 1.8% of the maximum grid lengths.

Figure 6: Amplitude evolution from inviscid flow at convective Mach number equals to 0.4 and wavenumber
approximately to 0.89 for a non-uniform grid. The disturbance here was composed of a fundamental and sub-
harmonic mode. A non-uniform grid in y-direction was used in these simulations and the stretching parameter
was selected by 8 = 12. The frames presented correspond to the non-dimensional times 60, 68 and 96.

Figure 7: Amplitude evolution from inviscid flow at convective Mach number equals to 0.4 and wavenumber
approximately to 0.89 for a non-uniform grid. The disturbance here was composed of a fundamental and
subharmonic mode. A non-uniform grid in y-direction was used in this simulations and the stretching parameter
was selected as 3 = 15. The frame presented corresponds to the non-dimensional time of 96.

More tests were performed for the evolution of non-linear instabilities. Here the non-linear tests were carried
out to verify the code when the disturbances have reached large amplitudes. In this case, the non-linear effects
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need to be considered. The theory associated with these effects is more complex than for small-amplitude, linear
disturbances and will not be present here. Previews of the subject can be found in Herbert, 1988 and Medeiros,
2000. The summary of the main results, given below, is enough for carrying out the tests proposed. Both theory
and experiment show that in a shear layer the disturbance does not grow to infinity. Instead this disturbance
satures in a limit cycle pattern of co-rotating vortices. In turn, the vortices are themselves unstable to a
subharmonic disturbance. It means that if a subharmonic oscillation exists in the flow this oscillation will grow.
The result is a pairing of vortices. It is important to emphasize that in the system there is no mechanism for the
production of subharmonic disturbances, but only for amplification. In the numerical solution of the equations
of motion, this seeding of subharmonic waves may come from round-off error. The growth of subharmonic
provides a good indication of the numerical error of CFD codes.

The simulations performed for this analysis employ the full compressible Navier-Stokes equations, including
the viscous terms. The initial disturbance amplitude of the dominant and subharmonic mode was the same
that in the previous studies. First, the disturbance was composed of only one mode with wavenumber o = 7/4.
Figure 8 shows a sequence of the evolution of two-dimensional disturbances over time. Initially in the linear
regime, the disturbance is very small and display a sinusoidal pattern. The fundamental mode grows and two
satures vortices are formed, which corresponds to the limit cycle oscillation. The vortices dissipate due to
viscous effects. Under these circumstances the non-linear theory predicts no pairing. Although there are no
tendency of pairing, but at very late times a pairing occurs. Figure 9 shows, that indeed, the vortices take a
rather long time to pair. It occurred only when the vortices were almost entirely dissipated by viscous effects.
Since the subharmonic excitation was not excited, the explanation for this behavior is that the subharmonic
seed for the pairing must have arisen from numerical error.

Figure 8: The linear and nonlinear two-dimensional evolution of disturbance composed of a dominant mode.
A non-uniform grid in y-direction was used in these simulations. The frames presented correspond to the
non-dimensional times 10, 55, 60, 65, 75 and 100

The following simulations were performed with the deliberate introduction of a subharmonic perturbations.
The wavenumber of the disturbance selected for the simulation was a; = 0.82 for fundamental mode, and
as = a1/2 for the subharmonic mode. The characteristics of the flow in first stages were identical to the
previous test. In this case the same behavior can be seen in figure 10. In the initially stage a sinusoidal growth
was displayed. After the fundamental mode arises and saturates, the subharmonic mode grows and two of the
primary structures begin to rotate around each other. After, the pairing occurs between these two vortices and
one large vortex results. In this case, the pairing occurs due a excited subharmonic disturbance rather than
numerical error. As result that the pairing occurs in earlier non-dimensional time of approximately 105. In the
previous simulation the same phenomenon occurs for non-dimensional time approximately 200. These results
indicate that the secondary instability was trigged by growing of the numerical error, which was very small
compared to the amplitude of the perturbations introduced.
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Figure 9: The linear and nonlinear two-dimensional evolution of disturbance composed of a dominant mode.
A non-uniform grid in y-direction was used in these simulations. The frames presented correspond to the
non-dimensional times 140, 150 and 200

Results for convective Mach number equals to 0.6 are shown in sequence 11. The first frame shows the flow
at non-dimensional time equals to 55. Here the two-dimensional disturbances excited by the fundamental mode
is not evident. At the same time, it can be observed in the sequence of M. = 0.4 that the flow presents a
sinusoidal pattern. In order words, at this stage the disturbance at M. = 0.4 grows faster than the disturbance
at M. = 0.6. Proceeding with this analysis at M. = 0.6, it can be observed in the second frame that the
fundamental mode grows becoming more clear for non-dimensional time equals to 73. The next frame presents
the structures of co-rotating vortices before a merger at time about 85. The previous results at M, = 0.4 show
the same phenomenon at an earlier time of 65. Later the disturbance excited by the subharmonic perturbation
become evident leading to the pairing which occurs at time of 117. At M. = 0.4 the same phenomenon occurred
at a time of about 100. According to these studies we can conclude that the amplification rate is strongly
reduced as the convective Mach number is increased.

This analysis was extended to the case of a convective Mach number of 0.8 where compressibility effects
become important, as shown in figure 12. An interesting behavior can be observed in this sequence. First we
can seen that the growth rate of two-dimensional waves is strongly reduced with the convective Mach number is
increased. According to this sequence we can realize that the fundamental mode grows and are displayed with
more clear at non-dimensional time of 115. This delay correspond a 52% of time that occurs the same behavior
at convective Mach number of 0.4. Once again the amplification rate was reduced at high convective Mach
numbers in accordance with theory. Another aspect can be analyzed for this simulation. The plots of vorticity
show a clear change in structure as the convective Mach number is raised. The vortices become very elongated
in the streamwise direction at convective Mach number of 0.8. A physical explanation of the shape change
will now be suggested. A fluid element approaching the structure from the upper left-hand-side experiences an
expanding flow, and a reduction in vorticity, until it is alongside the vortex. Then the element is subject to a
compression, with an associated increase in vorticity as it approaches the trailing edge of the vortex, and the
stagnation region behind. A similar process affects fluid elements approaching from the lower right-hand-side.
The overall effect is that vorticity above and below the vortex is reduced, and vorticity in front and behind the
vortex is increased, leading to a structure elongated in the streamwise direction. The elongated vortex does not
wrap any new fluid around the structure, and it cannot then be engulfed and mixed, and there is only growth
by viscous diffusion. The circular vortex wraps fluid from the free streams around itself, and grows strongly. If
we assume a monotonic trend we see that the effect of an elongated vortex is to reduce the growth rate of the
shear layer.

5. Conclusions

In this work the numerical simulation of a compressible free shear layer was performed. The governing
equations were the compressible Navier-Stokes equations. A 6" order compact finite-difference scheme was
used for discretizing the spatial derivatives. In order to remove a short length scales, a 4th order compact
filter was implemented. The method adopted was time accurate, using a 4'* order Runge-Kutta scheme. A
free-slip boundary condition was used in y-direction. As well as a exponential decay condition in y-direction.
Periodic boundary condition was implemented in x-direction. Lastly, these simulations were carried out on a
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Figure 10: The linear and nonlinear two-dimensional evolution of disturbance composed of a dominant mode
and a subharmonic mode at convective Mach number equals to 0.4. A non-uniform grid in y-direction was used
in these simulations. The frames presented correspond to the non-dimensional times 30, 55, 60, 65, 70, 80, 90,
100, 105, 110 and 165.

non-uniform grid. This technique was utilized to remove sound waves produced by the pairing that occurs due
a secondary instability. These waves can propagate in normal direction forwards free stream boundaries and
might be reflected back contaminating the numerical solution.

The compressible shear layer flow was simulated giving some interesting results. In the linear regime was
possible to obtain an good amplification rate with the use of stretching in y-direction. This non-uniform grid
allows for a high resolution in the interior of the domain. The growth rate for uniform and non-uniform grids
was analyzed and the cases with a grid stretching show the best results. Also, the effect of the convective Mach
number on the growth rate of two-dimensional disturbances was analysis. The results confirm a reduction in
the growth rate for high convective Mach numbers as also predicted linear theory stability.

For simulations in the non-linear regime the results were very interesting and it was possible reproduce some
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Figure 11: The linear and nonlinear two-dimensional evolution of disturbance composed of a dominant and a
subharmonic mode at convective Mach number equals to 0.6. A non-uniform grid in y-direction was used in
these simulations. The frames presented correspond to the non-dimensional times 55, 73, 85, 110, 117 and 128.

Figure 12: Linear and nonlinear two-dimensional evolution of disturbances composed of a fundamental mode
and a subharmonic mode at convective Mach number equal 0.8. A non-uniform grid in y-direction was used in
these simulations. The frames presented correspond to the non-dimensional times 30, 115, 125, 133, 160 and
170.

important physical phenomena. First, the effects of the grid stretching was analyzed. Test was performed to
verify the efficiency of grid stretching in damping at undesirable sound waves produced by the shear zone. In
this analysis we observed that these waves were strongly reduced in the direction towards the boundaries, if
grid stretching was applied.

Following the evolution of disturbances composed of a dominant mode were presented. In these simulations
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the two-dimensional disturbances show a sinusoidal pattern and structure of vortices forming until the limit
cycle oscillation. Lastly it was introduced a subharmonic mode, and this way, it was possible to reproduced
the secondary instability. In this case, a pairing occurs between the two vortices and one large vortice results.
From these results it was possible to verify the effect of the convective Mach number on the amplification rate of
two-dimensional waves. These results confirm that the growth rate were strongly reduced as the Mach number
was increased. This behavior is in agreement with other studies of hydrodynamic instability in compressible
shear layers and the authors of this work concluded that the results for all cases were very good.
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